GCE BIOLOGY BY1

Marks
Questions Marking details
Available

1. (a) (i) Biosensor; 1
(ii) Tissue; 1(b) (i) Prokaryotic has no nucleus vs eukaryotic has a nucleus / eukaryotic1 has membrane bound organelles vs prokaryotic no membrane bound organelles (Accept named membrane bound organelle) / prokaryotes smaller ribosomes (70S) vs Eukaryotes larger (80S) / DNA circular v DNA in chromosomes or strands [must refer to both terms];
Reject reference to cell wall;
Reject reference to size;
Reject reference to plasmid;
(ii) Chloroplast contain chlorophyll vs mitochondria have no chlorophyll (accept photosynthetic pigments) / grana vs no grana / stroma vs matrix / cristae vs no cristae / thylakoid vs no thylakoids / cristae vs grana / infolding of membrane in mitochondria not in chloroplasts [must refer to both structures];

Marks

Questions Marking details

Available
2. (a) (i) α glucose OH on C 1 down, H up $+\beta$ glucose OH on C 1 up, H down; Allow HO (both for 1 mark).
(b) (i) Cellulose -Beta Starch - alpha; (both for 1 mark).

Allow symbols.
(ii) Starch: any 2
correct reference to amylose and/or amylopectin;
glycosidic bonds (a 1-4);
molecules coil/branch (in amylopectin); NOT compact
NOT: amylopectin - coiled or amylase branched
easy to add/remove \{glucose / maltose\} units;

Cellulose: any 2
alternate units rotate / head up, head down / 180° rotation;
straight chain only / no branches; NOT parallel
hydrogen bonds between / reference to cross linking;
gives strength or stability / forming microfibrils;

Marks

Questions Marking details

Available

3. (a) (i) Nucleotide;
(ii) Phosphate / phosphoric acid / $\mathrm{PO}_{4} / \mathrm{PO}_{3}$;

NOT phosphorus / P
(iii) Deoxyribose in DNA and ribose in RNA (both);
(iv) Adenine, Thymine, Cytosine, Guanine (1 if 1 error).
(b) Any 4

4
Pairing described A-T and C-G (both needed);
Backbone / Chains / polynucleotide formed by alternating sugar
phosphate groups;
two chains connected / joined by base pairs;
hydrogen bonding;
two chains (twisted) to form a helix / double helix;
NOT alpha helix.
Accept labelled diagram.
(c) \quad forming template / code / instructions\} for \{protein synthesis / mRNA
/ amino acid sequence / primary structure of protein / transcription\} (accept Replication in dividing cells) /

NOT genetic material alone.
Marks
Available4. (a) 2 chromosomes in female cell;1 chromosome in male cell;Diagrams must match each other.Accept 'chromatids' in each cell. Do not accept chromatid in malecell if chromosomes drawn in female cell or opposite.
(b) (i) 2 Chromosomes arranged on equator of spindle; (ignore orientation) 2 V shaped \{chromosomes / chromatids\} with centrosomes towards each centriole/pole;
Ecf from one diagram to other.
(ii) Labelling: chromatids, centromere, spindle, centrioles, equator, cell membrane.
2 marks for 4 correct labels on either diagram;
1 mark for 3.
(iii) To provide \{genetically identical cells / clones\};
Repair / replacement \{of cells / tissue\} / regeneration qualified; NOT growth.
(iv) Making gametes / sperm cells / sex cells / produce haploid cells for reproduction;
(v) Meiosis / reduction division;
Spelling must be correct.
(vi) Genetic variation (in the offspring) / restore diploid number (in zygote) OWTTE;
(c) Fertilised eggs will develop into females, unfertilised eggs into males; (both for 1 mark);
Accept: fertilised will give genetically varied ants, unfertilised would give clones;
IGNORE haploid / diploid.

Marks

Available

(b) (i) Mosaic: Proteins are scattered (in lipid layer); 2

Fluid: molecules / components / (phospho)lipids / proteins are free to move around;
(ii) B ;
(iii) Drawing shows a lipid bilayer with A and B in the correct places, B intrinsic (through the middle) A extrinsic (on top or bottom, outside phosphate heads);

Need not use N and P , but must be clear which is A and B any 1 correct label from phospholipid / hydrophobic / hydrophilic / cholesterol / phosphate (head) / lipid or fatty acid (tails);
(iv) Cell \{recognition / interaction / identification / cell to cell recognition / adhesion / signalling\} / receptor qualified e.g. \{hormone receptor / antigens\};
(c) (i) Secondary;
(ii) Ribosomes / rough endoplasmic reticulum;

Accept nucleus;
NOT golgi body / nucleolus.
(d) (i) Endocytosis (accept phagocytosis / pinocytosis);

NOT exocytosis.
(ii) Any 2
Diffusion / osmosis;
Facilitated diffusion;
Active transport;
Questions Marking details

Available

6. (a) (i) 0.4 M ; no units no marks.
(ii) $\quad-1052(\mathrm{kPa})$
allow ECF
(b) correct reference to osmosis;
bathing solution \{has a lower water potential / is more concentrated / is more negative / hypertonic\} than the water potential of beetroot cells / ORA;
water leaves / moved \{out of / from\} cells / into bathing solution;
bathing solution became less dense / lighter than original sucrose
solution;
REJECT reference to water moving into or out of the drop.
(c) $-790=-1100+\Psi_{p}$;
$\Psi_{\mathrm{p}}=310 \mathrm{kPa} ;$
2 marks for correct answer.
(d) (i) Diagram shows cell plasmolysed (any stage);
Mark diagram using labels.
No labels $=0$ marks.
Any 2 correct labels from
cell wall; plasma / cell membrane (part or all of which must be away
2
from cell wall); tonoplast or vacuolar membrane; vacuole;
IGNORE incorrect labels.
(ii) Plasmolysed / plasmolysis; 1

Marks

Questions Marking details

Available

7. (a) (A Nucleus;

B Contains DNA code for amino acid sequence;
NOT genetic information alone;
C Carries out transcription / makes RNA copy;
$\left\{\begin{array}{lll}D & \text { Nucleolus; } & 1 \\ \text { E } & \text { Makes ribosomes / organises transcription / makes rRNA; } & 1\end{array}\right.$
F \{Rough ER / Ribosomes\} \{ translate mRNA / put amino acids 1 together / protein synthesis\};
$\begin{cases}G & \text { Endoplasmic reticulum; } \\ H & \text { Transports protein; }\end{cases}$
$\left\{\begin{array}{lll}I & \text { (To) Golgi; } & 1 \\ J & \text { Packages protein into vesicle; } & 1 \\ \text { K } & \text { Modifies protein or description; } & 1\end{array}\right.$
$\begin{cases}L & \text { Secretory vesicle; } \\ M & \text { Vesicle migrates towards plasma membrane; (can award } M \text { and } N \text { if } \\ & \text { use vesicle instead of secretory vesicle) }\end{cases}$
N Vesicle fuses / merges with plasma membrane; 1
O Contents of vesicle emptied by exocytosis;

Questions Marking details

Marks

Available
7. (b) A Temperature;

B description of (exponential) increase to optimum / maximum / certain temperature then (sudden) decline / sketch graph showing;

C Increasing temperature increases rate because of increased energy / moving molecules faster / kinetic energy / ORA;

D \{Increasing frequency of / more / more likely\} successful collisions / Enzyme Substrate Complexes forming / ORA;

E pH;
F description of optimum pH and declining activity further from optimum in both directions / sketch graph / optimum pH and narrow range;
(Award G, H, I, J in context for Temp and/or pH)

L Enzyme concentration; NOT amount;
(Award M,N, O in context for Enzyme conc and/or Substrate conc)
$\left\{\begin{array}{llr}\text { M } & \text { Activity increases up to maximum when it levels off / sketch graph } & 1 \\ & \begin{array}{l}\text { showing / ORA; }\end{array} \\ \text { N } & \text { Increasing substrate / enzyme conc. increases number of active sites } & 1 \\ & \begin{array}{ll}\text { occupied / Enzyme Substrate complexes / successful collisions / ORA; }\end{array} & \\ \text { O } & \text { Maximum rate when all active sites occupied / saturated correct } & 1 \\ & \text { reference to limiting factors; } & \end{array}\right.$

